THREE NEW DIMERIC APORPHINOIDS FROM BERBERIS SPECIES

SADIQA FIRDOUS, EMIR VALENCIA, MAURICE SHAMMA,

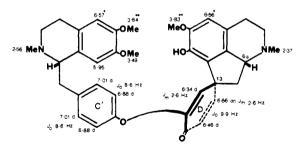
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802

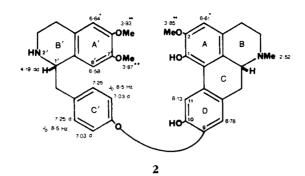
Alejandro Urzúa,

Departamento de Química, Universidad de Santiago de Chile, Santiago 2, Chile

and VICTOR FAJARDO

Departamento de Química, Petroleo y Petroquímica, Universidad de Magallanes, Punta Arenas, Chile


Berberis species (Berberidaceae) have so far vielded two types of proaporphinebenzylisoquinoline dimers which differ in stereochemistry at the C-13 spiro center. Those belonging to the normal series incorporate H-6a and the ring D aryloxy substituent in an *anti-r*elationship. whereas in the epi-series, these functions are in a syn-arrangement. Although six proaporphine-benzylisoquinolines of the normal series are known-(+)-pakistanamine (1), (+)-valdivianine (1), (+)valdiberine (1), (+)-berbivaldine (1), (+)-rupancamine and (+)-(2).patagonine (1)-only two of the somewhat less common epi-variety have been recognized so far, these being (+)epivaldiberine (1) and (+)-epiberbivaldine (2). We now describe a third epidimer, namely (+)-epivaldivianine (1), C37H40N2O6, obtained from Berberis valdiviana Phil., v max (CHCl₃) 1635, 1665, and 3670 $\rm cm^{-1}$.

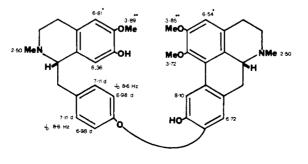

The 200 MHz (CDCl₃) ¹H-nmr spectrum of (+)-epivaldivianine is summarized in **1**. The notable feature of this spectrum is the characteristic ring D vinylic doublet downfield at δ 6.34. This shift is diagnostic of the *epi*-series, since for normal compounds the vinylic doublet is found near δ 6.1 (1,2). Another significant trait of the spectrum pointing to the *epi*-stereochemistry is the well-defined A₂B₂ system at δ 6.88 and 7.01 representing the protons in the *para*-substituted ring C' (2).

The mass spectrum of (+)-epivaldivianine (1) includes molecular ion m/z608 and base peak m/z 206 due to rings A' and B' of the tetrahydrobenzylisoquinoline moiety.

Final proof of structure was derived from acid catalyzed rearrangement of the alkaloid that furnished the known aporphine-benzylisoquinoline (-)-kalashine in which the aporphine is 1,2,10,11substituted. If (+)-epivaldivianine had belonged to the normal series, a C-1,2,9,10-oxygenated aporphine would have been obtained (1).

The second new dimer we report is the aporphine-benzylisoquinoline (+)-2'norpakistanine (2), $C_{36}H_{38}N_2O_6$, also found in *B. valdiviana*. The 360 MHz (CDCl₃) nmr spectrum is outlined in 2. Only one *N*-methyl singlet at δ 2.52 is present, which was assigned to the aporphine portion. Interestingly, the H-8'

singlet absorption at δ 6.58 is not as upfield as in other related aporphine-benzylisoquinolines (3). This is because of the NH function in ring B' which encourages a conformational change such that ring C' is closer to ring B' than to A'. Similarly, the C-7' methoxyl falls within the δ 3.87 to 3.93 span rather than in the more common δ 3.40-3.60 range (3). In line with the presence of an NH function in ring B', the H-1' signal is relatively downfield at δ 4.19.


Significantly, the mass spectrum of (+)-2'-norpakistanine (2) showed molecular ion m/z 594 and base peak m/z 192 representing rings A' and B' of the tetrahydrobenzylisoquinoline unit. Finally, and as expected, Eschweiler-Clarke N-methylation of 2 supplied the known (+)-pakistanine.

An interesting point concerning (+)-2'-norpakistanine (**2**) is that it is the first *nor* compound known among dimers of the pakistanine-kalashine series, all of which are derived biogenetically from the condensation of two coclaurinoid moieties (3).

Our third new natural product is (+)-1-0-methylchitraline (**3**), $C_{37}H_{40}N_2O_6$, isolated from *Berberis darwinii* Hook. This aporphine-benzylisoquinoline dimer had previously been obtained in vitro through acid rearrangement of the normal proaporphine-benzylisoquinoline (+)-patagonine (1).

The ¹H-nmr chemical shifts in the 200 MHz (CDCl₃) spectrum for (+)-1-O-methylchitraline are presented around expression **3** and correspond closely to those previously reported for the semisynthetic material (1). The mass spectrum of the natural product showed molecular ion m/z 608 and base peak m/z 192 due to rings A' and B' of the tetrahydrobenzylisoquinoline portion.

A significant feature of all aporphinebenzylisoquinoline dimers so far obtained from *Berberis* species, such as (+)pakistanine, (+)-porveniramine, (+)chitraline, (-)-khyberine, and (-)kalashine (3) is that they inevitably include a hydroxyl group at C-10 of the aporphine moiety. This is, of course, a reflection of their biogenetic origin since they are derived from the dienonephenol rearrangement of the corresponding proaporphine-benzylisoquinoline dimers. It will be interesting to observe

in the future just to what extent this trend continues to apply.

EXPERIMENTAL

PLANT COLLECTION AND EXTRACTION.— B. valdiviana (20 kg, dry stems) was collected near Valdivia, Chile (4,5). B. darwinii (18 kg, dry stems) was gathered near Osorno, Chile (4-6). The plants were air-dried, powdered, and extracted with cold EtOH. The basic alkaloidal extracts were fractionated by silica gel column and thin layer chromatography.

(+)-EPIVALDIVIANINE (1).—Amorphous, 4.5 mg from *B. valdiviana*; $\lambda \max (MeOH) 234$ sh, 285 nm (log $\in 4.50, 3.93$); ms *m*/*z* 608 (M⁺) (0.02), 604 (0.28), 588 (0.14), 575 (0.12), 401 (0.6), 295 (8), 207 (14), 206 (100); $[\alpha]^{25}D$ +69.4° (c 0.1, MeOH).

REARRANGEMENT OF **1** TO (- -KALASHINE. ---(+)-Epivaldivianine (1 mg) was refluxed in 2N HCl for 2 h. Work-up provided kalashine, $[\alpha]^{25}D = 27.4^{\circ}$ (c 0.06, MeOH), identified by spectral comparisons.

(+)-2'-NORPAKISTANINE (2).—Mp 148° (MeOH), 10 mg from *B. Valdiviana*; λ max (MeOH) 224, 268, 277, 292, 308 nm (log ϵ 4.66, 4.16, 4.26, 4.05, 4.12); ms *m*/*z* 594 (M⁺) (0.4), 593 (2), 592 (6), 591 (8), 590 (15), 588 (11), 575 (6), 207 (6), 206 (62), 192 (100); $[\alpha]^{25}D$ +9.1° (c 0.05, MeOH).

N-METHYLATION OF 2.—Dimer 2 (2 mg) was dissolved in HCOOH (0.5 ml) and aqueous

formaldehyde (0.5 ml), and the solution was refluxed for 4 h. Work-up provided (+)-pakistanine identified by its spectral data and by comparison with an authentic sample.

(+)-1-0-METHYLCHITRALINE (**3**).—Amorphous, 5 mg from *B. darwinii*; λ max (MeOH) 226, 269, 279, 304 nm (log ϵ 4.55, 4.06, 4.17, 3.98); identified by spectral comparisons.

ACKNOWLEDGMENTS

This research was supported by NSF grant CHE-8210699 and NSF Latin American Cooperative grant INT-8213104.

LITERATURE CITED

- 1. H. Guinaudeau, V. Elango, H. Shamma, and V. Fajardo, *Chem. Commun.*, 1122 (1982).
- 2. I. Weiss, A.F. Freyer, M. Shamma, and A. Urzúa, *Heterocycles*, 22, 2231 (1984).
- For a listing of the dimeric aporphinoids, see H. Guinaudeau, M. Leboeuf and A. Cavé, J. Nat. Prod., 47, 565 (1984).
- E. Valencia, I. Weiss, S. Firdous, A.J. Freyer, M. Shamma, A. Urzúa, and V. Fajardo, *Tetrahedron*, 40, 3957 (1984).
- S. Firdous, A.J. Freyer, M. Shamma, and A. Urzúa, J. Am. Chem. Soc., 106, 6099 (1984).
- E. Valencia, A.J. Freyer, M. Shamma, and V. Fajardo, *Tetrabedron Lett.*, 25, 599 (1984).

Received 16 April 1985